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A Pole Placement-Based Output Tracking
Control Scheme by Finite-and-Quantized

Output Feedback
Yuchun Xu, Yanjun Zhang , Member, IEEE , and Ji-Feng Zhang , Fellow, IEEE

Abstract—This letter proposes a finite-and-quantized
output feedback output tracking control scheme for pos-
sibly non-minimum phase discrete-time linear systems that
are subject to output quantization and saturation. An ana-
lytical pole placement-based control law is proposed by
solely utilizing the finite-and-quantized output and the
external reference output. The closed-loop stability and
output tracking analysis are essentially different from the
classical pole placement method. It needs to overcome
some new technical issues caused by finite-and-quantized
output feedback, such as how to realize closed-loop sta-
bility while restricting the finite quantization of the output
measurement. This letter demonstrates that by appropri-
ately designing the quantizer’s sensitivity, the proposed
control law ensures all closed-loop signals are bounded,
and the output tracking error converges to a certain resid-
ual set of the origin within a certain finite time, regardless
of the existence of unstable zeros and poles in the con-
trol systems. Particularly, the residual set can be arbitrarily
small under a specified design condition. Finally, a repre-
sentative example validates the proposed control scheme.

Index Terms—Discrete-time, finite time, output tracking,
pole placement control, quantized-output feedback.

I. INTRODUCTION

DURING the past two decades, the problems of control
systems subject to quantized and/or saturated constraints

have attracted significant attention in the control community.
Generally, classic state and output feedback control methods
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cannot be directly applied to control systems subject to quan-
tization and saturation measurements, especially for the finite
quantized case. Additionally, practical control systems suffer
from measurement errors due to the sensor’s limitations in
accuracy and magnitude. Moreover, compared to exact feed-
back control designs, the finite-and-quantized feedback control
technique is more robust in anti-disturbances. Therefore, it is
of theoretical and practical significance to develop new meth-
ods that improve the system performance for control systems
subject to quantization and saturation problems.

To date, tremendous development has been made in
quantized feedback control theory and applications. In the
1960s, [1] introduced the quantized control idea to reduce the
computational burden in optimum designs. Since then, various
quantized control methods have been developed, such as [2]–
[6]. The quantizers in quantized feedback control systems are
generally divided into static and dynamic, with the former hav-
ing fixed quantized levels and quantized errors. Nevertheless,
solely relying on static quantization is challenging to afford
global or semi-global convergence. Therefore, [7] developed a
dynamic quantized method, which, compared to the static, has
an adjustable parameter called “the sensitivity” of the quan-
tizer. Both quantizer types have been widely used in various
control system classes, e.g., deterministic control systems [8],
stochastic control systems [9], multi-agent consensus or for-
mation [10], [11], and network control systems [12], [13]. In
particular, the stabilization and tracking control problems have
been extensively studied utilizing quantized control [14]–[16].
Furthermore, the saturation problem has also been considered
in quantized control systems, where [17] studied the control
problem of the systems subject to saturation and proposed sev-
eral constructive anti-windup methods, and [18] investigated
the robust stabilization problem of uncertain linear systems
under saturated state feedback.

Recently, [19] established a basic framework for tracking
control of discrete-time linear time-invariant (LTI) systems by
using finite-and-quantized output feedback. Moreover, a new
model reference control (MRC) scheme was developed by uti-
lizing finite-and-quantized output feedback. However, such a
control scheme is only suitable for controlling minimum-phase
systems, still suffering from the fundamental control problem:
how to effectively control a general class of discrete-time
LTI systems covering the minimum and non-minimum phase
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cases. In [20] and [21], the authors demonstrated that the pole
placement control (PPC) method achieves an appealing out-
put tracking via the exact state or output feedback. However,
it is an open research case whether a finite-and-quantized out-
put feedback version of the classic PPC scheme is still valid.
To our knowledge, such a problem has not been addressed
yet. Compared with the classic PPC method, the finite-and-
quantized feedback case suffers from some new technical
problems, such as realizing closed-loop stability and achieving
output tracking while restricting the finite quantization of the
output measurement. Hence, this letter aims to address these
concerns systematically. The main contributions of this letter
are as follows:
(i) Providing an affirmative “yes” answer to the problem

of whether a finite-and-quantized output feedback ver-
sion of the classic PPC law is still valid. In particular,
a quantized-and-saturated output feedback version of the
classic PPC law is analytically constructed.

(ii) Compared with the existing literature, the proposed con-
trol method has distinctive characteristics. First, it ensures
that the output tracking error converges to a residual
set of the origin within a certain finite time. Second,
global convergence of the output tracking is achieved
in the sense that the proposed control law is inde-
pendent of the system’s initial conditions. Finally, the
controlled plant is allowed to have unstable poles and
zeros, i.e., the proposed control method is effective for
both minimum-phase and non-minimum phase systems.

The remainder of this letter is as follows. Section II intro-
duces the system model and control problems to be addressed.
Section III reviews the fundamental PPC law and presents
the details of the finite-and-quantized output feedback PPC
scheme. Section IV presents some simulation examples, and
finally, Section V concludes this letter.

II. PROBLEM STATEMENT

This section presents the system model and the problems
investigated in this letter.

System model: Consider the following discrete-time single-
input and single-output (SISO) LTI system:

A(z)[y](t) = B(z)[u](t), t ≥ t0, (1)

where t0 is the initial moment of the system operation and
A(z), B(z) are polynomials with constant coefficients of degree
n and n − 1, respectively, i.e.,

A(z) = zn + an−1zn−1 + · · · + a1z + a0, (2)

B(z) = bn−1zn−1 + bn−2zn−2 + · · · + b1z + b0. (3)

In this letter, z and z−1 denote the forward and backward shift
operators, i.e., z[x](t) = x(t + 1) and z−1[x](t) = x(t − 1),
where t ∈ {0, 1, 2, 3, . . . , }, x(t) � x(tT) for a sampling period
T > 0 and x(t) denotes any signal of any finite dimension. For
the system model (1), y(t) cannot be measured accurately and
one can only acquire its finite and quantized values denoted
as q(y(t),�(t)), where q is the quantizer to be given.

Dynamic quantizer: Let X(t) ∈ R be any signal on R. Then,
this letter’s quantizer is specified as

q(X(t),�(t))

=
⎧⎨
⎩

M, if X(t) > (M + 1
2 )�(t),

[ X(t)
�(t) + 1

2 ], if −(M + 1
2 )�(t) < X(t) ≤ (M + 1

2 )�(t),

−M, if X(t) ≤ −(M + 1
2 )�(t),

(4)

where �(t) �= 0 depends on t and is called the sensitivity of q,
M is a positive integer, and [X(t)] � max{k ∈ Z : k < X(t)}.
Although the proposed method does not have any restrictive
conditions on the used quantizer, this letter relies on the quan-
tizer proposed in [7]. In this sense, the suggested technique
may be extended to other quantizer types, such as logarith-
mical or hysteretic, which may pose future study. As clarified
in [7], the quantizer (4) has certain physical meanings and
potential application prospects, such as a camera with zooming
capability and a finite number of pixels that can be modeled
as a quantizer (4).

Reference output model: The reference output signal y∗(t)
is bounded and satisfies the condition

Q(z)[y∗](t) = 0, (5)

where Q(z) is a monic polynomial of degree nq with either
nonrepeated zeros on the unit circle |z| = 1, or zeros inside
the unit circle |z| < 1.

Remark 1: Unlike MRC, that only needs the reference sig-
nal being bounded, the pole placement-based tracking control
technique further requires that the reference signal y∗ sat-
isfies the internal model (5) to achieve output tracking. As
clarified in [20] and [21], the internal model condition (5)
is necessary for the PPC design to achieve output tracking.
Note that for a broad class of bounded time-varying sig-
nals, some appropriate Q(z) can be chosen to satisfy (5). For
example, for y∗(t) = a sin(σ t) + b cos(σ t), with σ �= 0 and
a2 + b2 �= 0, Q(z) can be chosen as z2 − 2z cos σ + 1. For
y∗(t) = a1 sin(σ1t) + a2 sin(σ2t) + b1 cos(σ1t) + b2 cos(σ2t),
with σ1 �= 0, σ2 �= 0, σ1 �= σ2 and a2

i + b2
i �= 0, i = 1, 2, Q(z)

can be chosen as (z2 − 2z cos σ1 + 1)(z2 − 2z cos σ2 + 1).
Control objective: For any given bounded y∗(t) satisfy-

ing (5), the control objective is to develop a quantized output
feedback control law u(t) for the system model (1) ensur-
ing that all closed-loop signals are bounded and y(t) − y∗(t)
converges to a certain small residual set in certain finite time.

Assumption: To meet the control objective, the following
assumption is required.

(A1): A(z)Q(z) and B(z) are coprime.
Assumption (A1) is a standard condition in classical PPC,

with the finite-and-quantized output feedback PPC scheme still
being effective under Assumption (A1). In the MRC design,
B(z) must be stable. However, this letter does not require that
B(z) is stable, i.e., the proposed method can deal with systems
covering minimum-phase and non-minimum phase cases.

III. FINITE-AND-QUANTIZED OUTPUT FEEDBACK

CONTROL DESIGN

This section develops a finite-and-quantized output feedback
PPC scheme for LTI systems.

A. Fundamentals of Classical PPC

This part presents a key design equation in PPC design and
gives a basic structure of the classic PPC law.
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Key design equation: Choose a monic stable polynomial
A∗(z) of degree 2n + nq − 1, where nq is the degree of Q(z)
in (5). Under Assumption (A1), the following Diophantine
equation can be solved

C(z)Q(z)A(z) + D(z)B(z) = A∗(z), (6)

with respect to C(z) and D(z) to find a unique solution of the
form

C(z) = zn−1 + cn−2zn−2 + · · · + c1z + c0, (7)

D(z) = dnq+n−1znq+n−1 + · · · + d1z + d0. (8)

Utilizing (7) and (8),

C(z)Q(z) = zn+nq−1−θ∗
1(n+nq−2)z

n+nq−2− · · · −θ∗
11z−θ∗

10, (9)

B(z)D(z) = α∗
2n+nq−2z2n+nq−2+α∗

2n+nq−3z2n+nq−3+ · · · +α∗
0 . (10)

In the PPC design, the design equation (6) must be solved to
obtain the coefficients of C(z) and D(z). Under Assumption
(A1), the solution of the design equation (6) is unique and
can be obtained from an algebraic equation for any A∗(z) of
degree 2n+nq−1. The corresponding proof is provided in [20]
and [21].

Classical PPC law: From (8) and (9), the standard output
feedback PPC law is given as [21]

u(t) = θ∗T
1 ω1(z)[u](t) + θ∗T

2 ω2(z)[y](t) − θ∗T
2 ω2(z)[y

∗](t), (11)

where

θ∗
1 = [θ∗

10, θ
∗
11, . . . , θ

∗
1(n+nq−2)]

T ∈ R
n+nq−1, (12)

θ∗
2 = −[d0, d1, . . . , dn+nq−2, dn+nq−1]T ∈ R

n+nq , (13)

ω1(z) = [z−n−nq+1, z−n−nq+2, . . . , z−1]T , (14)

ω2(z) = [z−n−nq+1, z−n−nq+2, . . . , z−1, 1]T . (15)

Remark 2: From the control law (11), it can be proven that
the tracking error y(t) − y∗(t) converges to zero exponen-
tially [21]. Since A∗(z) in (6) is only required to be stable,
a natural choice for A∗(z) is z2n+nq−1. Particularly, when
A∗(z) = z2n+nq−1, precise output tracking can be achieved
in certain finite time. Specifically, the output feedback PPC
law (11) with A∗(z) = z2n+nq−1 ensures y(t0 + 2n + nq − 1) −
y∗(t0 + 2n + nq − 1) = 0, which can be concluded from the
proof of Lemma 1 in the sequel.

B. Quantized-Output Feedback PPC Design

The finite-and-quantized feedback PPC method has the
following design details.

Quantized-output feedback PPC law structure: Motivated
by the standard output feedback PPC law, the quantized-output
feedback PPC law is designed as

u(t) = θ∗T
1 ω1(z)[u](t) + θ∗T

2 ω2(z)[�q(y,�)](t)

− θ∗T
2 ω2(z)[y

∗](t), (16)

where �(t) is the sensitivity of q in (4) to be designed later,
and θ∗

1 , θ∗
2 , ω1(z) and ω2(z) are the same as in (11).

Remark 3: Note that θ∗
1 and θ∗

2 are constructed using the
coefficients of the polynomials D(z) and C(z)Q(z). To con-
struct both polynomials with Q(z) being known, C(z) and

D(z) are still needed. Note that {C(z), D(z)} is the solu-
tion of equation (6). Thus, to solve equation (6), the main
task is to calculate the inverse of the Sylvester matrix of
A(z)Q(z) and B(z), which has an 2n+nq dimension. Therefore,
the computational complexity of the proposed approach is
O((2n + nq)

3).
Tracking error equation: Let the quantized error and the

tracking error be

e(t) = y(t) − y∗(t), (17)

s(y(t),�(t)) = �(t)q(y(t),�(t)) − y(t), (18)

respectively. Then, the following lemma specifies a tracking
error equation, which is crucial for the sensitivity �(t) design
and stability analysis.

Lemma 1: Considering A∗(z) = z2n+nq−1, the finite-and-
quantized output feedback PPC law (16) applied to the
system (1), ensures

e(t + 1) = α∗Tω(z)[s(y,�)](t),∀t ≥ t0 + 2n + nq − 2, (19)

where α∗ = −[α∗
2n+nq−2, α

∗
2n+nq−3, . . . , α

∗
0 ]T ∈ R

2n+nq−1

with α∗
i in (10) and ω(z) = [1, z−1, . . . , z−2n−nq+2]T .

The proof of this lemma is provided in the Appendix.
Equation (19) implies that the tracking error y(t) − y∗(t) con-
verges to zero in certain finite time when A∗(z) = z2n+nq−1

and using the exact output feedback, i.e., s(y(t),�(t)) = 0.
However, for the finite-and-quantized feedback PPC case,
before designing �(t), it is unsure whether s(y(t),�(t)) is
bounded or not. Thus, the tracking error equation (19) does
not imply the boundedness of e(t). Next, it will be shown that
with an appropriate choice of �(t), s(y(t),�(t)) can be made
small, and thus e(t) can be made small.

Specification of the control law: Let

λ∗ � max{magnitudes of |λi(A(z))|}, (20)

where λi(A(z)), i = 1, 2, . . . , n, denotes the zeros of A(z) on
the complex z−plane. Then, an appropriate λ can be chosen
such that λ > λ∗. Assuming that some appropriate integer
N ≥ 1 exists such that

M ≥ c

γ N−1
+ d

c0γ N−1λk(t1+2n+nq−2)
+ 1

2
, (21)

where c0, k, γ are constants with c0 > 0, k ≥ 1, 0 < γ < 1,

and c, d, t1 are defined as

c � an upper bound of
1

2
‖α∗‖1, (22)

d � an upper bound of |y∗(t)|, (23)

t1 � min{t ≥ t0 + 1 : |q(y(t),�(t))| ≤ M − 1}. (24)

Then, the finite-and-quantized output feedback PPC law is
designed as

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈ [t0, t1),
θ∗T

1 ω1(z)[u](t)
+θ∗T

2 ω2(z)[�(ti)q(y, �(ti))](t)
−θ∗T

2 ω2(z)[y∗](t), t ∈ [ti, ti+1),

i = 1, . . . , N − 1,

θ∗T
1 ω1(z)[u](t)

+θ∗T
2 ω2(z)[�(tN)q(y, �(tN))](t)

−θ∗T
2 ω2(z)[y∗](t), t ∈ [tN, ∞),

(25)
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where �(t) = c0λ
kt for t ∈ [t0, t1), and

�(ti) = c0γ
i−1λk(t1+2n+nq−2), i = 1, 2, . . . , N, (26)

with t2 � t1 + 2n + nq − 1 and

ti � min{t ≥ ti−1 + 1 : |q(y(t), �(t))| ≤ c�(ti−1) + |y∗(t)|
�(ti−1)

+ 1

2
}

(27)
for i = 3, 4, . . . , N.

Remark 4: When the system operates from t0, the system
input u(t) is zero and �(t) = c0λ

kt. For u(t) = 0, the system
model becomes A(z)[y](t) = 0. In this case, the system output
y(t) grows at most exponentially. Moreover, since λ > λ∗ with
λ∗ in (20), it yields that �(t) grows faster than |y(t)|. Thus,
regardless of q(y(t0),�(t0)) saturates or not, there always
exists some finite t1 such that �(t1) > |y(t1)|. Then, based on
the definition of the quantizer, q(y(t1),�(t1)) is not saturated.
Hence, t1 and �(t1) are both well-defined, which follows
that t2 is also well-defined and so is �(t2). In the proof of
Theorem 1, it will be demonstrated that ti, i = 3, 4, . . . , N
in (27) are all well-defined.

System performance analysis: With the finite-and-quantized
output feedback PPC law (25), the main result is derived as
follows.

Theorem 1: Under Assumption (A1), if inequality (21)
holds, then the quantized-output feedback PPC law (25),
applied to system (1) with any unmeasurable y(t0) ∈ R,
ensures that all closed-loop signals are bounded and the
tracking error satisfies

|e(t)| ≤ cc0γ
N−1λk(t1+2n+nq−2),∀t ≥ tN + 2n + nq − 1, (28)

where c, c0, k, γ are constants defined in (21) and (22).
The proof of this theorem is provided in the Appendix.

Theorem 1 indicates that the proposed control law can achieve
a bounded output tracking. Considering Theorem 1, one may
raise the question of whether the tracking error e(t) can be
made arbitrarily small. The following remark gives a positive
answer to this question.

Remark 5: For any given constant ε > 0 and based on the
proof of Theorem 1, one can verify that if M further satisfies
the inequality

M ≥ cd

ε
+ c2c0λ

k(t1+2n+nq−2)

ε
+ 1

2
, (29)

then the proposed control law (25) ensures that all closed-loop
signals are bounded and the tracking error satisfies

|e(t)| ≤ ε, ∀t ≥ tN + 2n + nq − 1. (30)

This indicates that the proposed control law (25) achieves
practical output tracking under a specified condition (29). The
proof of the above conclusion is similar to Theorem 1 and
thus is omitted to improve this letter’s readability.

So far, an analytical finite-and-quantized output feedback
PPC law has been proposed with all signals and parameters
being specified. Such a control law can achieve bounded or
practical output tracking under different design conditions.

Fig. 1. y (t) v.s. y∗(t) (y0 = 4500).

Fig. 2. Response of the control law (y0 = 4500).

IV. SIMULATION STUDY

This section provides a representative example to illustrate
the design procedure and validate the theoretical results.

Simulation model: Consider the system model Ar(z)[y](t) =
Br(z)[u](t), where Ar(z) = (z + 1

2 )(z − 2), Br(z) = z + 2.

This model is unstable as an unstable pole z = 2 exists. In
addition, there exists an unstable zero z = −2 and thus the
simulation model is non-minimum phase. The reference output
is chosen as y∗(t) = 20 sin(π

2 t) − 2 cos(π
2 t). Given equation

Q(z)[y∗](t) = 0, it follows that Q(z) = z2 + 1.
Specification of θ∗

1 and θ∗
2 : Note that θ∗

1 and θ∗
2 in the

quantized-output feedback PPC law are the same as in the
classic output feedback PPC law (16). Thus, given that
Ar(z), Br(z), Q(z) and the design equation (6) have known
coefficients, it follows that θ∗

1 = [− 14
15 ,−1,− 14

15 ]T , θ∗
2 =

[− 7
15 ,− 29

30 ,− 4
15 ,− 17

30 ]T and α∗ = −[ 17
30 , 7

5 , 3
2 , 12

5 , 14
15 ]T .

Quantized output feedback PPC law: The following param-
eters are defined: from (20), λ = 2.1; from (27), c = 6; and
from (21), d = 25. On the basis of (25), the constant param-
eters c0, M, k, γ are chosen as c0 = 1, M = 4001, k = 1, and
γ = 1

2 . Then, from (21), N = 10. Thus, the control law can
be specified from (25).

Simulation results: This letter considers two scenarios
y(0) = 4500 and y(0) = 30 to verify the proposed control
method independent of the initial conditions. For y0 = 4500,
Fig. 1 illustrates the response of the system output y(t) ver-
sus the reference output y∗(t), revealing that the tracking
performance is satisfactory when t > 24. Fig. 2 depicts the
response of the quantized output feedback PPC law, while
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Fig. 3. Response of �(t) (y0 = 4500).

Fig. 4. y (t) v.s. y∗(t) (y0 = 30).

Fig. 5. Response of the control law (y0 = 30).

Fig. 3 presents the response of the quantizer sensitivity �(t).
From the latter figure, it can be seen that t1 = 1, t2 = 6,
t3 = 8, t4 = 9, t5 = 11, t6 = 13, t7 = 15, t8 = 17, t9 = 18,
and t10 = 20, with the evolution of �(t) exactly matching the
theoretical results. For the y0 = 30 case, Figs. 4-6 highlight
that the proposed method achieves satisfactory results.

In summary, the simulation results validate the effectiveness
of the proposed method and its independence from the initial
conditions. Moreover, recalling that As(z) and Bs(z) are not
stable, the simulation results also verify the validity of the
proposed method for the non-minimum phase system.

V. CONCLUSION

This letter presents a finite-and-quantized output feedback
version of the standard PPC law and demonstrates its effec-
tiveness in controlling general discrete-time LTI systems under
relaxed design conditions. The finite-and-quantized output
feedback PPC law is analytically constructed and only replies
on the condition that A(z)Q(z) and B(z) are coprime. The

Fig. 6. Response of �(t) (y0 = 30).

suggested scheme provides a feasible method to effectively
control the non-minimum phase systems subject to output
quantization and saturation.

Although the developed scheme poses an appealing solu-
tion, it would be interesting to consider the following prob-
lems: (i) how to modify the proposed control method so that
asymptotic output tracking can be achieved; and (ii) how
to realize adaptive output tracking control for systems with
unknown parameters based on the proposed control method.

APPENDIX

PROOF OF LEMMA 1

Let A∗(z) = z2n+nq−1 and z �= 0. The key design
equation (6) can be written in the form

C(z)Q(z)A(z)

z2n+nq−2
+ D(z)B(z)

z2n+nq−2
= z. (31)

By operating both sides of (31) on y(t) and y∗(t),
C(z)Q(z)A(z)

z2n+nq−2
[y](t) + D(z)B(z)

z2n+nq−2
[y](t) = y(t + 1), (32)

C(z)Q(z)A(z)

z2n+nq−2
[y∗](t) + D(z)B(z)

z2n+nq−2
[y∗](t) = y∗(t + 1). (33)

With the reference system (5) and (33), it follows that
D(z)B(z)
z2n+nq−2 [y∗](t) = y∗(t + 1). With (16), it yields

u(t) = (
θ∗

10

zn+nq−1
+ θ∗

11

zn+nq−2
+ · · · +

θ∗
1(n+nq−2)

z
)[u](t)

− (
d0

zn+nq−1
+ d1

zn+nq−2
+ · · · + dn+nq−1

z0
)[�q(y, �)](t)

+ (
d0

zn+nq−1
+ d1

zn+nq−2
+ · · · + dn+nq−1

z0
)[y∗](t)

= (1 − C(z)Q(z)

zn+nq−1
)[u](t) + D(z)

zn+nq−1
[y∗](t)

− D(z)

zn+nq−1
[�q(y, �)](t).

Thus, it follows

C(z)Q(z)[u](t) = D(z)[y∗](t) − D(z)[�q(y,�)](t). (34)

Using the system model (1), it yields

y(t + 1) = C(z)Q(z)B(z)

z2n+nq−2
[u](t) + D(z)B(z)

z2n+nq−2
[y](t)

= y∗(t + 1) + D(z)B(z)

z2n+nq−2
[y − �q(y,�)](t). (35)
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Therefore, it follows that e(t + 1) = − D(z)B(z)
z2n+nq−2 [s(y,�)](t),

which implies e(t+2n+nq−1) = −D(z)B(z)[s(y,�)](t),∀t ≥
t0. It further follows that e(t + 1) = α∗Tω(z)[s(y,�)](t),∀t ≥
t0 + 2n + nq − 2, which completes the proof. ∇

Proof of Theorem 1: When the system operates from t0,
u(t) = 0, a well-defined t1 can be obtained.

When t = t1, together with the definition of t1 in (24)
and the structure of quantizer in (4), it follows that |y(t1)| ≤
c0λ

kt1(M − 1
2 ). For t ≥ t1, the control law is changed from

u(t) = 0 to (16) with �(t) = �(t1). Thus, based on the
fact that c0λ

kt grows faster than y(t), it yields |y(t1 + j)| ≤
c0λ

k(t1+j)(M − 1
2 ) ≤ �(t1)(M − 1

2 ) for j = 0, 1, . . . , 2n +
nq − 2 and �(t1) = c0λ

k(t1+2n+nq−2), which implies that
y(t1 + j), j = 0, 1, . . . , 2n+nq −2, all are not saturated. Then,
for t1 ≤ t ≤ t1 + 2n + nq − 2, it follows |s(y(t),�(t))| =
|�(t1)[

y(t)
�(t1)

+ 1
2 ] − y(t)| ≤ �(t1)

2 . Thus, from Lemma 1 it
follows that |y(t1 + 2n + nq − 1) − y∗(t1 + 2n + nq − 1)| =
|α∗ω(z)[s(y,�)](t1 + 2n + nq − 2)| ≤ | 1

2α∗�(t1)| ≤ c�(t1).
Then, it yields |y(t1 + 2n + nq − 1)| ≤ c�(t1) + |y∗(t1 + 2n +
nq − 1)|. Thus, from (21), it follows |y(t1 + 2n + nq − 1)| ≤
�(t1)(c+ |y∗(t1+2n+nq−1)|

�(t1)
) ≤ �(t1)(M− 1

2 ), which implies that
q(y(t1 + 2n + nq − 1),�(t1 + 2n + nq − 1)) is not saturated.
Repeating the above procedure, it can be further verified that
q(y(t),�(t)) is not saturated for all t ≥ t1 +2n+nq −1. Thus,
it can be concluded that, if �(t) is chosen as �(t1) in (16) for
all t ≥ t1, q(y(t),�(t)) will never saturate and e(t) satisfies
|e(t)| ≤ c�(t1),∀t ≥ t1 + 2n + nq − 1.

Then, let t2 = t1 + 2n + nq − 1. When t = t2, the control
law changes to (16) with �(t) = γ�(t1). Then, |y(t2)| ≤
c�(t1) + |y∗(t2)| = γ�(t1)(

c
γ

+ |y∗(t2)|
γ�(t1)

) ≤ �(t2)(M − 1
2 ),

which implies q(y(t2),�(t2)) is not saturated. From Lemma 1,
it yields |y(t2 + 1) − y∗(t2 + 1)| = |α∗ω(z)[s(y,�)](t2)| ≤
c�(t1). Thus, from (21) it follows |y(t2 + 1)| ≤ c�(t1) +
|y∗(t2 + 1)| = γ�(t1)(

c
γ

+ |y∗(t2+1)|
γ�(t1)

) ≤ �(t2)(M − 1
2 ), which

implies that y(t2 + 1) is not saturated. By repeating the above
procedure, it can be proven that for all t ≥ t2, q(y(t),�(t)) is
not saturated, i.e., |y(t)| ≤ �(t2)(M − 1

2 ), t ≥ t2. Then, from
Lemma 1, for t ≥ t2 + 2n + nq − 1, it follows that |e(t)| =
|y(t) − y∗(t)| = |α∗ω(z)[s(y,�)](t − 1)| ≤ c�(t2) = cγ�(t1),
which implies |y(t)| ≤ c�(t2) + |y∗(t)|, t ≥ t2 + 2n + nq − 1.

Thus, there exists a well-defined number t3 as defined in (27).
When t = t3, the control law changes to (16) with �(t) =

�(t3) and using Lemma 1 it yields |y(t3) − y∗(t3)| ≤ c�(t1),
|y(t3)| ≤ c�(t1) + |y∗(t3)| = γ 2�(t1)(

c
γ 2 + |y∗(t3)|

γ 2�(t1)
) ≤

�(t3)(M − 1
2 ), which implies that q(y(t3),�(t3)) is not sat-

urated. Thus, using Lemma 1 again, it follows that q(y(t3 +
1),�(t3 + 1)) is not saturated. Then, it further follows that
q(y(t3 + 2),�(t3 + 2)) is not saturated, neither do q(y(t3 +
3),�(t3 + 3)), q(y(t3 + 4),�(t3 + 4)), . . . Therefore, it can
be concluded that, if the control law is chosen as (16) with
�(t) = �(t3) for t ≥ t3, q(y(t),�(t)) will never saturate
and from Lemma 1 it follows that e(t) satisfies |e(t)| ≤
cγ 2�(t1), t ≥ t3 +2n+nq −1. Repeating the above procedure,
t4, . . . , tN can be obtained and a sequence {�(ti)}1≤i≤N can be
derived. Moreover, the control law (25) can ensure that e(t)
satisfies (28).

Finally, it follows that y(t) ∈ L∞ from y∗(t) ∈ L∞. Then,
by operating both sides of (6) on u(t) with A∗(z) = z2n+nq−1,
yields C(z)Q(z)A(z)+D(z)B(z)

A∗(z) [u](t) = u(t). Combined with (1)

and (34), it can be derived that u(t) = A(z)D(z)
A∗(z) [y∗](t) −

A(z)D(z)
A∗(z) [�q(y,�)](t) + D(z)A(z)

A∗(z) [y](t) = A(z)D(z)
A∗(z) [s(y,�)](t) +

A(z)D(z)
A∗(z) [y∗](t). Since y∗(t) and s(y(t),�(t)) are bounded and

A∗(z) = z2n+nq−1 is stable, it yields that u(t) ∈ L∞.
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